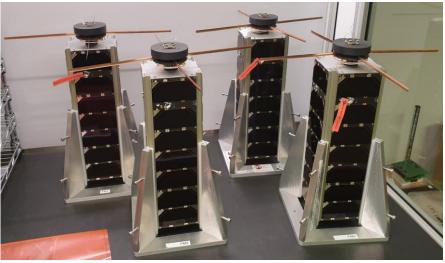
A Technical View of the NetSat Mission

NetSat Launch Party, Würzburg, 28.09.2020

Julian Scharnagl Technical Project Coordinator julian.scharnagl@telematik-zentrum.de



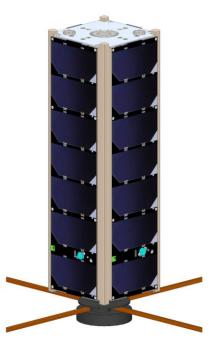
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie

NetSat Launch Party

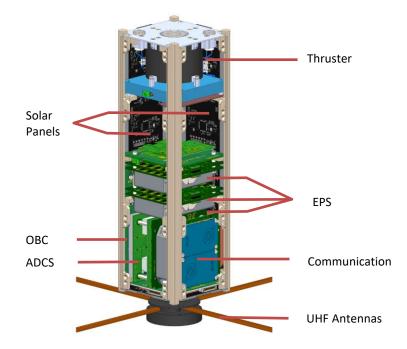
The NetSat Satellites

Four CubeSats to Demonstrate Autonomous Cooperation of Satellites in Three Dimensions in Space

The four NetSat satellites before delivery to the launch site in a cleanroom storage



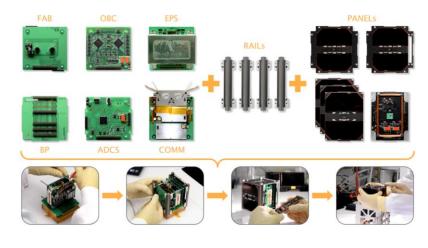
- 4 identical small satellites
- 3-Unit CubeSats (10 x 10 x 30 cm each)
- 3.9 kg mass
- · All typical functionalities on compact volume


The NetSat Satellites

Composition of the Subsystems within the Modular Satellite Structure

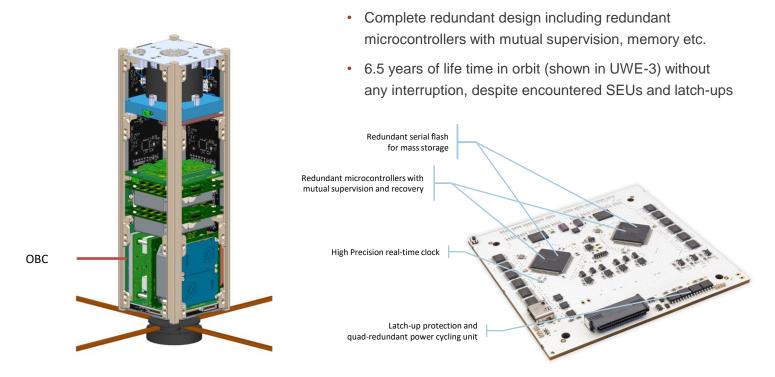
The NetSat Satellites

Composition of the Subsystems within the Modular Satellite Structure



Modular Satellite Bus

- Modular and flexible satellite system design
- No harness, no wires
- · Standardization of electrical and mechanical interface

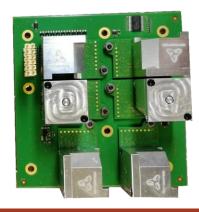


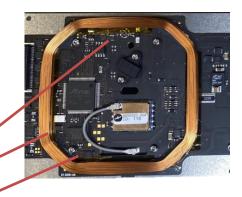
Electrical IF standards supported by UNISEC Europe: http://unisec-europe.eu/standards/bus/

Julian Scharnagl

On Board Computer

Robust Data Handling using Commercial of the Shelf Components and Intelligent Software for FDIR



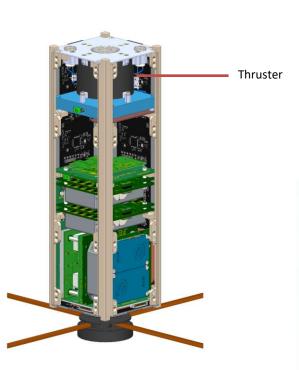

Attitude Determination and Control System

Distributed ADCS System including Multiple Sensors and Actuators

- Attitude control essential for •
 - charging batteries (sun pointing)
 - performing orbit maneuvers (thrust pointing)
- Sensor and actuator set
 - Miniature sun sensor (NanEye)
 - Magnetic air coil
 - Inertial measurement unit (IMU)

- Reaction wheel assembly:
 - Miniature electric motor (20x20x20 mm, 26g)
 - Full redundancy (or double _ performance) by using 2 wheels in each direction

cyber motor

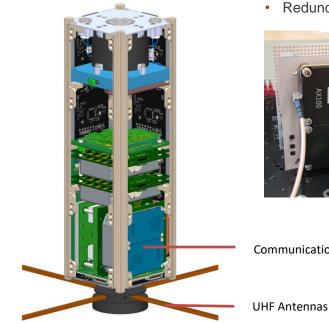

A Technical View of the NetSat Mission

AOCS

Julian Scharnagl

Orbit Determination and Control

GNSS Based Relative Navigation and Control Using Electric Propulsion


- Orbit determination using miniature GNSS receiver (20x15x3 mm)
 - Orbit control using electric propulsion
 - 10 350 µN thrust
 - Total impuls: > 5000 Ns
 - Δv: > 1000 m/s (5 kg CubeSat)
 - Inert non-pressurized propellant (Indium)

HYPERION TECHNOLOGIES

Communication System

Ground and Inter Satellite Communication Enabling Autonomous Formation Flying

- Amateur UHF antennas •
- $\lambda/2$ redundant dipoles •
- Redundant transceivers

Self-developed antenna • deployment mechanism

Satellite Manufacturing at ZfT

- Many manufacturing steps performed in house
 - Pick & placement of electronics components
 - Soldering
 - Solar cells assembly

In house electronics pick & placement

In house automated solar cell assembly using robot manipulator

Satellite Integration at ZfT

• Satellite integration completely done in house at ZfT using modular UNISEC concept

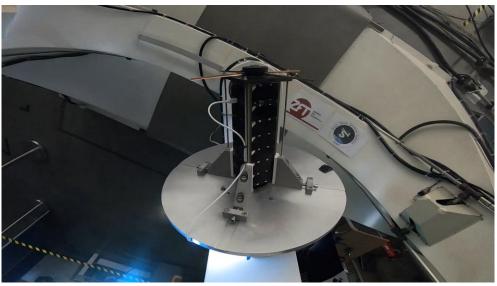
Satellite integration within 2-3 hours due to modular setup

Testing

- Modular UNISEC based DevKit used for in house tests at ZfT
- In house system tests on the satellites
- Environmental tests performed at external test facilities
 - Thruster tests at IRS
 - Thermal-vacuum tests at IABG

UNISEC DevKit

ZfT staff performing in house testing


ZfT collaborator preparing engineering model in vacuum chamber

Testing

• Sun sensor calibration performed with high precision dynamic bench test facility from S4 GmbH

S4 dynamic test bench facility

NanEye sun sensor calibration on turn tables

On the Way to Russia

Insertion of NetSat satellites into deployer

Integration of deployers into upper stage

Soyuz rocket on the way to the launch pad

- · Launch site: Plesetsk, Russia
- Launch date: 28.09.2020 13:20:07 (CET)
- Orbit insertion of the 4 NetSat satellites at 16:52:12 (CET)

Many Supportive Partners

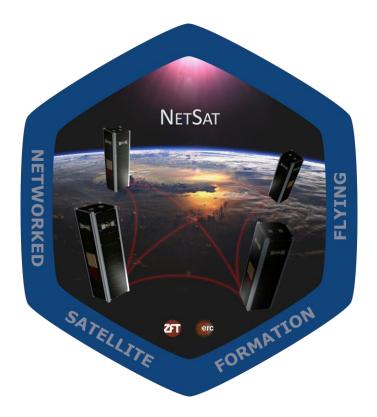
cyber motor

EXOLAUNCH

And many many more...

A Technical View of the NetSat Mission

Julian Scharnagl


opta

A Highly Motivated Team

Back row:Philipp Wolf, Ilham Mammadov, Eddy Contreras, Julian Scharnagl, Oliver Ruf, Marcel Pörner, Alexander KleinschrodtIntermediate row:Dennis Wellenzohn, Anna Aumann, Prof. Klaus Schilling, Slavi Dombrovski, Roland Haber, Eric JägerFront row:Panagiotis Kremmydas, Florian Kempf

Not on this picture, but no less involved: Daniel Garbe, Dieter Ziegler, Frederik Dunschen, Florian Leutert, Ursula Scherm and many more...

Julian Scharnagl Technical Project Coordinator julian.scharnagl@telematik-zentrum.de

A Technical View of the NetSat Mission

Julian Scharnagl